
161

Automated Norm Synthesis in an Agent-based Planning
Environment

George Christelis
∗

School of Informatics
The University of Edinburgh

Edinburgh EH8 9AB, United Kingdom
george.christelis@ed.ac.uk

Michael Rovatsos
School of Informatics

The University of Edinburgh
Edinburgh EH8 9AB, United Kingdom

michael.rovatsos@ed.ac.uk

ABSTRACT

Norms and social laws are one of the key mechanisms used to
facilitate coordination in multiagent systems. In existing ap-
proaches the process of designing useful norms has to either
be performed by a human expert, or requires a full enumer-
ation of the state space which is bound to cause tractability
problems in non-trivial domains. In this paper we propose a
novel automated synthesis procedure for prohibitive norms
in planning-based domains that disallow access to a set of
predefined undesirable states. Our method performs local
search around declarative specifications of states using AI
planning methods. Using this approach, norms can be syn-
thesised in a generalised way over incomplete state speci-
fications to improve the efficiency of the process in many
practical cases, while producing concise, generalised, social
norms that are applicable to entire sets of system states.
We present an algorithm that utilises traditional planning
techniques to ensure continued accessibility under the pro-
hibitions introduced by norms. An analysis of the computa-
tional properties of our algorithm is presented together with
a discussion of possible heuristic improvements.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms

Algorithms, Design

Keywords

Norms, social laws, coordination, conflict resolution, auto-
mated planning

1. INTRODUCTION
In distributed systems in which agents act independently

to achieve their objectives, it is common for the actions of an
agent to have a negative impact on the outcome of the ac-
tions of another, or on the global performance of the system.

∗The author is a Commonwealth Scholar

Cite as: Automated Norm Synthesis in an Agent-based Planning En-
vironment, Christelis, G. and Rovatsos, M., Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The resulting conflicts might undermine the efficiency and
stability of the system through resource contention, livelock
and deadlock, and could impair agents’ abilities to achieve
their goals [10]. It is therefore in the best interest of the sys-
tem designer to avoid or resolve such conflicts. A variety of
coordination mechanisms for multiagent system have been
proposed as a means of managing the interdependencies be-
tween actions of independent agents in a shared system. Via
such mechanisms, agents deliberate and reason over their
own actions with the additional knowledge of what actions
other agents are likely to perform in particular situations.

One established coordination theory inspired by social sci-
ence and philosophical research is that of social norms [4].
Social norms can be described as a set of established, ex-
pected patterns of behaviour that govern the agents in a
system [1]. These patterns describe what behaviour is en-
couraged or discouraged in the system and can be used by
agents as templates which regulate their own behaviour. In
such systems, agents must all behave in a manner that is
consistent with the expectations of the other agents within
the system. This behavioural expectation is at the core of
coordination via social norms.

Social norms play a key role in the social process of agents
in a shared system and are key to achieving social objectives.
They reduce the reasoning requirements of agents and re-
duce the amount of communication required in the system
since conflict resolution techniques are no longer required
(or are required less often) [2].

Shoham and Tennenholtz [8] show the complexity of norm
synthesis to be NP-complete through a reduction from 3-
SAT. Subsequent approaches to norm synthesis based on full
state-space enumeration have been proposed yet these are
often intractable in the general case or not easily applicable
in real world systems.

In this paper we propose a novel norm synthesis mech-
anism that can be applied to existing declarative planning
domains without any domain re-specification. We automat-
ically synthesise norms over general state specifications, re-
sulting in concise, generalised applicable norms. Further-
more, we guarantee accessibility to goal states under the
new norms.

We begin by introducing the problem of norm synthesis
in the context of a propositional planning formalism in the
following section. Section 3 details our proposed conflict-
rooted synthesis procedure. An example of the synthesis
process is presented in Section 4. A discussion of the algo-
rithm follows in Section 5, followed by a summary of related
work in Section 6 and conclusions in Section 7.

Cite as: Automated Norm Synthesis in an Agent-based Planning Envi-
ronment, George Christelis, Michael Rovatsos, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2009), Decker,
Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest,
Hungary, pp. 161–168
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

162

2. NORM SYNTHESIS
To define the problem of norm synthesis in an abstract

state transition system, we assume a finite set of discrete,
instantaneous environment states. Agent actions transform
the state of the environment and the execution of actions is
assumed to be asynchronous.

The states are split into two disjoint sets: undesirable
conflict states and conflict-free states. We make no further
assumptions at this point about preferential ordering in the
conflict-free states1. Prohibitionary norms in such a system
define conditions under which agent actions are forbidden.

The problem of norm synthesis, restricted to prohibitive
norms, can then be stated as follows: given a set of conflict
states, what actions must be conditionally forbidden so as
to prevent access to these conflict states while ensuring con-
tinued access to all conflict-free states. One simple solution
to this problem is to deny all access to each conflict state by
forbidding all actions leading to these states. Such prohibi-
tions would be conditional on the entire state description of
the precursor states. There are numerous downsides to this
naive approach:

1. a complete state space enumeration is always required,

2. prohibitions are not general, but are conditional on
complete states, which may result in a large number
of prohibitive rules, and

3. enumerating all concrete conflict states could be avoided
by using generalised state abstractions.

One abstraction over states commonly used in the planning
literature is that of state specifications [5]. In this paper we
show how a declarative planning domain specification can
be utilised to synthesise norms at a state specification level,
without necessarily considering a complete state enumera-
tion. The following section introduces a running example,
followed by our planning formalism.

2.1 Example Domain
In order to illustrate the process of norm synthesis, we

present a simple rail network grid domain. Consider two
agent-based trains, with goals to move from one grid loca-
tion to another without collisions. Grid intersections rep-
resent junctions where an agent can choose to alter their
direction, and to travel to any adjacent junction point. A
collision in this domain occurs when an agent moves into a
location occupied by another agent. Through the applica-
tion of a single operator an agent will traverse to the next
grid location. Furthermore, we assume the existence of train
tunnels: specific grid locations that the agent is required to
exit immediately after entering. Finally, for simplicity we
assume the system to be turn-based.

Through a single declarative conflict specification we il-
lustrate how we create a set of norms that remove collisions
from the system. The norms synthesised differ depending on
the location of an agent, and on the sensing of other agents
within the system. For instance, an agent will behave dif-
ferently if another agent is encountered in a grid location,
or in a tunnel. The domain is illustrated below.

1We make no differentiation between focal states (states that
are essential to agents achieving their goals) and conflict-free
states. All conflict-free states are assumed to be focal.

2

1

Agents in our example system have actions to move from one
location to another, enter a tunnel, exit a tunnel and to
remain idle. We introduce the following predicate knowl-
edge in the domain: conn(n1,n2) symbolises that node n1

is connected to n2, at(n1) symbolises that an agent is at lo-
cation n1 and tunnel(n1) to note that node n1 is a tunnel.
Agents can move between two locations if neither location is
a tunnel and if the two locations are connected. An agent
can enter a tunnel if they are at an adjacent location and
must subsequently exit a tunnel once inside.

2.2 Propositional Planning Formalism
The domain and problem formalisms that follow are based

upon the General Propositional Planning Formalism, an ex-
tension of traditional STRIPS with incomplete state spec-
ifications as described in [5]. Following their notation, we
define Σ to be a finite set of propositional atoms used to
uniquely represent each state within a system. The set Σ̂
denotes the literals over Σ, the union of all atoms in Σ, their
negations, and the constants �, ⊥ denoting truth and fal-
sity. Propositional semantic entailment |= is defined in the
standard way.

We define ¬L for some literal subset L ⊆ Σ̂ as the element-
wise negation of L, such that L = {p|¬p ∈ L} ∪ {¬p|p ∈ L}.
We write L1\L2 to denote set difference.

A state s is defined as a complete truth assignment for all
atoms in Σ, which we represent by a subset of Σ to capture
all those atoms in Σ that are considered to be true in s.
However for the purposes of our formalism we consider state
specifications used to describe a set of system states. A state
specification S is therefore a truth assignment over a subset
of Σ̂. A state specification is:

• consistent if ⊥ /∈ S, �l ∈ Σ such that l ∈ S and
¬l ∈ S (there are no complementary literals), and

• complete if for every l ∈ Σ, either l ∈ S or ¬l ∈ S.

We write s |= S to denote that state s is a model for state
specification S, which semantically implies that the truth
assignment to atoms in s satisfies the literals in S. For
example, given the set of atoms {a, b, c}, a valid state is
s = {b, c} implying that b and c are true, and a is false in
this assignment. If S = {¬a, b}, then s |= S (S models all
states where a is false, and b true). The set of states that
are modelled by a state specification S is written as Mod(S)
(if S is complete we have ||Mod(S)|| = 1).

Operators are action schemata represented as named pairs
of the form o = 〈pre, post〉. In this form pre(o) is used to
refer to the first element of the tuple and post(o) to the sec-
ond. In a propositional planning formalism, each operator

consists of consistent precondition pre ∈ 2Σ̂ and postcondi-

tion post ∈ 2Σ̂. Instances of these action schemata are used
as steps of a plan.

George Christelis, Michael Rovatsos • Automated Norm Synthesis in an Agent-based Planning Environment

163

Operators intuitively represent transitions between states in
the system. An operator o can be performed in state s
if s |= pre(o). The postconditions describe what changes
will occur to s once o is performed. The application of an
operator o ∈ O to a state specification S is expressed as a

function R : 2Σ̂ × O → 2Σ̂ such that:

R(S, o) =

8>><
>>:

(S\¬post(o)) ∪ post(o) if S �|= ⊥ ∧ S |= pre(o)
∧ post(o) �|= ⊥

⊥ otherwise

The planning problem can then be represented as a tuple

Π = 〈Ξ, I, G〉
where

• Ξ = 〈Σ, O〉 is the declarative domain structure con-
sisting of a finite set of propositional atoms Σ and a
set of operators O,

• I ⊆ Σ̂ is the initial state specification,

• G ⊆ Σ̂ is the goal state specification,

The result of applying a sequence of operators O∗ to a state

specification S is a recursive function Res : 2Σ̂ × O∗ → 2Σ̂

defined as follows:

Res(S, 〈〉) = S,
Res(S, 〈o1, o2...on〉) = Res(R(S, o1), 〈o2, ..., on〉)

A plan Δ = 〈o1, o2, . . . an〉 is a solution for planning problem
Π if and only if Res(I, Δ) |= G.

In our example, if an agent at location n3 wishes to tra-
verse to location n5, then I = {at(n3)}, G = {at(n5)} and
a resulting plan might be Δ = 〈move(n3,n4), move(n4,n5)〉
if we assume the corresponding connectivity between nodes.

2.3 A Normative Planning Formalism
The general planning formalism presented above provides

a declarative specification of a domain and the operators
agents utilise within it. However it contains no explicit no-
tion of social norms. In order to formalise the effect of a
norm, a concrete norm representation and a corresponding
normative planning formalism are required.

2.3.1 Prohibitionary Norm Representation
We consider a prohibitionary social norm model, where

norms act as behavioural constraints over operators of the
planning formalism. A set N = {n1, n2...} of norms con-

tains pairs of the format ni = 〈pre, op〉 where pre ∈ 2Σ̂

and op ∈ O, denoting that if a state specification S satisfies
the precondition pre, then the operator op is forbidden. As
with operator preconditions we restrict pre to a set of liter-
als; pre(ni) is used to refer to the first element in the tuple
and op(ni) to the second.

It should be noted that the set of operators O is assumed
to contain operator specifications for all agents.

2.3.2 A Normative Planning Extension
We now extend the general planning formalism presented

above to incorporate an explicit representation of social norms.
A normative planning problem (NPP) is an extension to the
general planning instance represented as a tuple

ΠN = 〈Ξ, I, G, N〉

where Ξ is the domain structure, I is the initial state specifi-
cation, G is the goal specification and N is a prohibitionary
set of social norms. Any application of operators in this
formalism is conditional on the set of prohibitions. We can
define a prohibition function over a state specification as

F : 2Σ̂ × O × 2N → {�,⊥} such that:

F (S, o, N) =

8<
:

� if ∃n ∈ N : S |= pre(n) ∧ op(n) = o

⊥ otherwise.

An operator o is forbidden for a state specification S under
norms N if there exists a norm prohibiting o with precon-
dition satisfied by S. This prohibition function can now be
used to extend the state transition function as follows:

R(S, o, N) =

8<
:

R(S, o) if F (S, o, N) = ⊥

⊥ otherwise

A solution to the NPP ΔN = 〈o1, o2, . . .〉 is a set of operators
that, if applied to the initial state specification I, will result
in a state that satisfies the goal state specification G without
violating any of the social norms in N .

A static implementation of the prohibitionary norm set
can be accomplished through an operator specification re-
write procedure. For each operator o ∈ O, the set of ap-
plicable norms are those No ⊆ N where ∀n ∈ No, op(n) =
o. It is then possible to rewrite the precondition for o as
pre′(o) = pre(o) ∧ `V

n∈No
¬pre(n)

´
.

It is important to note that the rewriting of operators is
not conditional on the initial or final state specifications of
the planning instance. This complies with the notion of so-
cial norms governing the behaviour of agents independently
of what the agents are attempting to achieve at any point:
norms are persistent and applicable for the long term.

3. CONFLICT-ROOTED SYNTHESIS
In the context of a propositional planning domain speci-

fication and a provided specification of undesirable conflict
states, norm synthesis can be defined as a procedure that
creates a set of norms for the provided domain. These norms
must prohibit access to all conflict states but ensure access
to conflict-free states. Our novel approach to this problem
is called conflict-rooted synthesis, and is based on localised
state specification traversal around conflict specifications.

Intuitively, the procedure operates as outlined in the ex-
ample below. In the figure, shaded states represent conflict
states, and white states are conflict-free.

SC

S1
P

S2
P

o1

o2

S1
S

S1
S

Given some conflict specification SC and domain Ξ, it is pos-
sible to infer the set of all precursor specifications (states
labelled SP) that, through the application of some opera-
tor (o1, o2), lead to SC . Similarly, it is possible to find all
successor states from SC that, through the application of a
run lead to a non-conflict successor state (the white states
labelled SS). Once this has been established a synthesis
procedure will guarantee accessibility by showing that it is

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

164

possible to traverse from each conflict-free precursor state
specification to each conflict-free successor, without travers-
ing to any intermediate conflict specifications.

At this point it is useful to note that state specifica-
tion size is inversely related to the expressiveness of the
specification. Using our example domain, the specification
{at1(n1)} models all states where agent 1 is at n1, whereas
{at1(n1), at2(n1)} models a subset of those states where
both agents are at n1.

3.1 Definitions
Consider a transition system with states E ⊆ 2Σ and bi-

nary relation θ : 2Σ ×O → 2Σ. We assume the specification

relation R : 2Σ̂ × O → 2Σ̂ as defined previously. We write
s

o→ s′ to denote that a transition between s and s′ for op-
erator o exists. If we consider a state specification S and an
operator o, then we define S |= pre(o) to denote pre(o) ⊆ S.

Definition 1. We define the following relationships between
state, state specifications and operators:

1. For a state s ∈ E and operator o ∈ O, o contributes to
s if ∃s′ ∈ E such that s′ o→ s ∈ θ.

2. For state specification S ∈ 2Σ̂ and operator o ∈ O, o
contributes to S if ∀s |= S, o contributes to s.

3. An operator o ∈ O is applicable from a state s ∈ E if
∃s′ ∈ E such that s

o→ s′ ∈ θ.

4. For any state specification S ∈ 2Σ̂, an operator o is
partially applicable from S if it is neither applicable
nor forbidden, such that ∃E′ ⊂ Mod(S) where o is
applicable from all states in E′.

Additionally, given two state specifications S1 and S2, we
write S1 |= S2 if S2 ⊆ S1. That is, every state that satisfies
the specification S2 will also satisfy S1. We define a run
as a sequence of state specifications/operators of the form

R = S0
o1→ S1

o2→ . . .
on→ Snwhere Si

oi+1→ Si+1 represents the
transition from Si to Si+1 via operator oi+1. We use the
notation first(R) and last(R) to refer to the first and last
state specifications in R respectively.

Plan projection follows directly from the application of
applicable operators to state specifications. If o is applicable
for some state specification S and S′ = R(S, o) then ∀s |= S,

there exists an s′ such that s
o→ s′ ∈ θ and s′ |= S′.

The conflict-rooted synthesis procedure presented below
differs from traditional plan projection, since it considers
not only applicable operators, but also partially applicable
ones. If we prohibit access to conflict states, to ensure ac-
cessibility between all conflict-free states we must ensure ac-
cessibility between all conflict-free precursor specifications,
and every resulting conflict-free successor state. Therefore
we are not only interested in the conflict-free specifications
accessible commonly from every state modelled by SC , but
also in the conflict-free specifications accessible from any
state modelled by SC .

3.2 Inference and Refinement
Two central notions of the algorithm are state inference

and state refinement. Two procedures are detailed below
that form the building blocks of the synthesis mechanism,
with key functions defined as appropriate.

Inference First, given a state specification S1 and op-
erator o, we present a forward inference mechanism to infer
the state specification S2, as depicted below.

o
S1

o
S1 S2⇒

Operator o is deemed partially applicable if the operator’s
precondition does not conflict with S1:

∀l ∈ S1 : �l′ ∈ pre(o).(l = ¬l′ ∨ l′ = ¬l)

We define the function Applicable : 2Σ̂ → 2O to return all
applicable operators for the provided specification.

This differs from classical planning approaches where all
literals in the precondition of o must be satisfied by S1.
Under the assumption that o can be performed from S1, a
refinement of the state specification of S1 can be inferred via
the function:

−−→
Ref (S, o) = S ∪ pre(o)

and S′
1 =

−−→
Ref (S1, o). We infer S2, the resulting state spec-

ification attained by performing operator o in S′
1, via the

function:
−→
Inf (o, S) = (S\¬post(o)) ∪ post(o)

and S2 =
−→
Inf (o, S′

1). Similarly, we can reverse infer a pre-
cursor state S1 given an operator o and successor state S2,
as depicted below.

oo ⇒S2 S1 S2

An operator o contributes to S2 if:

∃l ∈ post(o).(l ∈ S2 ∧ l �∈ pre(o))

and

�l ∈ ((pre(o)\¬post(o)) ∪ post(o)).¬l ∈ S2.

That is, o is contributing if the application of o results in
at least one literal that occurs in S2, so long as none of the
effects of o contradict S2, and none of the preconditions of o
that are not removed by ¬post(o) are inconsistent with S2.

We define the function Contributes : 2Σ̂ → 2O to return all
contributing operators for a provided specification.

We refine S2 via the function:

←−−
Ref (S, o) = S ∪ (pre(o)\¬post(o)) ∪ post(o)

and S′
2 =

←−−
Ref (S2, o). The inference of the precursor state

S1 follows via the function:

←−
Inf (S, o) = (S\post(o)) ∪ pre(o)

where S1 =
←−
Inf (S′

2, o).
State refinement This occurs when additional literals

are introduced into some state specification (i.e. the state is
refined). If such a state specification forms part of a run,
then the introduction of an additional literal has a potential
impact on the specifications of all other states in the se-
quence. We now define how refinement can be consistently
applied to runs of state specifications.

Consider a run R = S0
o1→ S1 . . .

ok→ Sk. Suppose state

specification Sk is being refined, such that S
′
k = Sk ∪ L

George Christelis, Michael Rovatsos • Automated Norm Synthesis in an Agent-based Planning Environment

165

where L is a set of new literals not already present in Sk.
L is consistent with the existing state Sk if ∀l ∈ L : ¬l �∈
Sk. L is consistent with R if it is consistent with the state
specifications S0 . . . Sk and

∀l ∈ L, ∀i ≤ k : ¬l �∈ post(oi) .

Consequently a new literal l is consistent with the prefix
run if every preceding operator does not remove l. The case
where l is removed and added via a subsequent operator is
not considered since l would already be part of the state
specification for Sk. The refined reverse run is then defined
via the function

RunRefine(R, L) = S′
0

o1→ . . .
ok→ S′

k

where Si ∈ R and S′
i = Si ∪ L.

Consider a run in our example domain of the form S1
o1→

S2
o2→ S3 where o1 = move(n1,n2) and o2 is unspecified.

We know o2 �= exit(n2,n3) since this introduces an incon-
sistency (the agent cannot exit a tunnel that has not been
entered). However, o2 = move(n2,n3) is consistent with
the current run and in turn introduces additional knowl-
edge (the literal conn(n2,n3) for instance). A refinement
of the run implies that this additional knowledge must now
form part of every preceding specification in the run, since
no preceding operator has added it as a postcondition.

3.3 Synthesis Procedure
A conflict state specification SC models a set of system

states s1, . . . , sn. Any synthesised norm must prohibit an
operator that, as an effect, results in a state modelled by
SC . We begin by considering the set of precursor opera-
tors contributing to SC , OP ⊆ O. Via the inference and
refinement process defined above, we can create an initial
run for each inferred precursor state, contributing operator
and refined conflict state.

For each run we now consider the set of consistent suc-
cessor operators, the operators that are applicable in SC .
Each operator might potentially lead to a unique conflict-
free successor state. We infer the new successor state for
each operator, append the new operator/state transition to
the run and subsequently refine all specifications in the run.
The process repeats for each run instance until the inferred
successor state is conflict-free or a loop is detected.

A complete run is of the form SP
o1→ SC

o2→ . . .
ok→ SS where

the inferred precursor and successor states (SP and SS) are
conflict-free, and all intermediate states are modelled by SC .
An incomplete run does not terminate in a conflict-free state.

Loop detection ensures that the algorithm terminates. Sin-
ce we consider all operators from a state specification there
is no benefit to examining such a specification again. Every
specification is analysed once and since we assume a finite
set of state literals the algorithm terminates.

Algorithm 1 details the state specification based traver-
sal of runs, leading from conflict-free precursor state spec-
ifications to conflict-free successors, through conflict states
specified in SC .

3.4 Accessibility
Our algorithm guarantees accessibility to all conflict-free

states without entering the specified conflict states. The set
of all complete runs provided by Algorithm 1 is subsequently
used to check accessibility. For each run, we attempt to find

Algorithm 1: Conflict-Free Run Traversal
Input: A conflict specification SC , and list of operators O
Result: The set complete, the runs from conflict-free

precursor to conflict-free successor states
begin

OP ← Contribute (SC)
for each precursor operator oi ∈ OP do

Si
C ←←−−

Ref(SC , oi)

Si
P ←←−−

Inf(oi, S
i
C)

(Initialise run for this specification, operator pair)

Ri ← Si
P

oi→ Si
C

complete ←− {}
unsafe ←− {Ri}
while |unsafe | > 0 do

Ri ←first(unsafe)
OS ← Applicable(last(Ri))

for each successor operator oj ∈ OP do
Ri,j ← Ri

last(Ri,j) ← −−→
Ref(last(Ri,j), oj)

Si,j
S ←−−→

Inf(oj, last(Ri,j))

if Consistent(Si,j
S , Ri,j) then

(Loop detection)
if Si,j

S �∈ Ri,j then

Ri,j ←RunRefine(Ri,j, Si,j
S)

Ri,j ← Ri,j

oj→ Si,j
S

if Si,j
S is not a conflict state then
complete ← complete ∪Ri,j

else
unsafe ← unsafe ∪Ri,j

return complete
end

an alternate path from the conflict-free first and last state
specifications of the run.

The necessity of full accessibility checking may be do-
main dependent2. In general, we propose that accessibility is
guaranteed for a run R if a solution to the planning instance
problem ΠN exists for I = first(R) and G = last(R), under
the set of synthesised prohibitions. Algorithm 2 details the
norm synthesis and accessibility verification process.

With each successor operator appended to a run, the spec-
ifications of the run are further refined since the final speci-
fication of the run must satisfy the precondition of the oper-
ator. It is probable that for any run the state specifications
within the run will not be complete. Such a specification
run therefore applies to multiple state/operator transitions
in the system, and as the states are refined more, so is the
set of states modelled reduced. If an accessibility plan ex-
ists for such a specification run, then it exists for each of the
states modelled by such a run.

Finally, should accessibility not be achievable from some
specification S, then we iterate the process again and include
S as a conflict state. Consider an agent in a state modelled
by S. The agent can perform only a single operator o in
S, and the application of that operator leads to a conflict

2For example, certain domains may define accessibility to be
resource constrained, while in others it could be sufficient to
guarantee that any alternative action is possible, as opposed
to a complete plan.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

166

Algorithm 2: Norm Synthesis and Accessibility Check

Input: The set of complete produced by Algorithm 2
Result: The set of synthesised norms N , or false

begin
(Create the set of prohibitionary norms)
N ← {}
for each run R ∈ complete do

pre ← first(R)
op ← first op(R)
N ← N ∪〈pre, op 〉

(Ensure accessibility for all runs)
for each run R ∈complete do

I ← first(R)
G ← last(R)
if no solution exists for ΠN = 〈Ξ, I, G, N〉 then

return false
return N

end

state. By prohibiting o, accessibility is not achievable since
the agent has no alternative action. Here we consider S as
a conflict state as well, since if the agent enters this state,
then subsequent conflict is unavoidable.

Many propositional planning formalisms allow for vari-
ables in the operator descriptions. We accommodate this
throughout the conflict-rooted search process through typi-
cal logic programming variable unifications. The process of
unification is further highlighted in the following example.

4. EXAMPLE SYNTHESIS
The planning specification of the operators move, enter,

exit and idle are presented below. We use atoms with
capital letters to denote variables in the operator specifica-
tions, and the subscript index i = {1, 2} to identify each
agent. From the operator preconditions it should be clear
that once an agent has entered a tunnel, the only option
available to them in their subsequent turn is to exit the tun-
nel they entered.

movei(L1, L2)
pre : {ati(L1),conn(L1,L2),¬tunnel(L1),¬tunnel(L2)}

post : {¬ati(L1),ati(L2)}
enteri(L1, T1)

pre : {ati(L1),conn(L1,T1),¬tunnel(L1),tunnel(T1)}
post : {¬ati(L1),ati(T1)}

exiti(T1, L1)
pre : {ati(T1),tunnel(T1),conn(T1,L1),¬tunnel(L1)}

post : {¬ati(T1),ati(L1)}
idlei(L)

pre : {¬tunnel(L),ati(L)}
post : {}

Agent indices and variables are used purely for notation. We
emphasise that such a representation can easily be mapped
to a propositional formalism by assigning a single proposi-
tional atom to each possible action occurrence.

We assume variables with the same name to be unified,
and to avoid confusion, we use ? to symbolise an ununi-
fied variable. The set of contributing precursor operators
(OP) for both agents (i ∈ 1, 2) are therefore movei(?,N),
enteri(?,N) and exiti(?,N).

First, we consider the action oi =(move1(?,N)) where
agent 1 moves into a conflict state. The refined conflict
state and precursor specifications resulting in the initial in-

complete run (Si
P

oi→ Si
C) are:

Si
C = {at1(N), at2(N), ¬at1(L), conn(L, N), ¬tunnel(L),

¬tunnel(N)}
Si

P = {at1(L), at2(N), conn(L, N), ¬tunnel(L),
¬tunnel(N)}

Due to agents taking alternating turns in the system, the
subsequent set of applicable actions for agent 2 is the fol-
lowing for this partial run:

OS ={idle2(N), move2(N,?), enter2(N,?)}
The successor actions move2 and enter2 both lead to conflict-
free successor states and these runs are complete. The idle
operator leads to a state specification that still satisfies the
collision state specification. Hence the resulting incomplete
run is iterated again. The successor operators OS for the
second iterations show identical actions for agent 1. We do
not allow the invocation of the idle action again since this
qualifies as a loop. The resulting complete runs are depicted
below (the state specifications are omitted). Specifications
matching the conflict state are shaded nodes.

SC

move1 idle1idle2

enter2 enter1

move1move2

The synthesised norm for the move operator therefore states
that if an agent is in a location that is adjacent to some loca-
tion occupied by another agent, then the agent is forbidden
to move to the occupied location. The norm is detailed as
N1 in Table 4. A key benefit of this synthesis procedure is
that from a single state specification we are able to synthe-
sise a set of norms, each of which applies to specific actions
that lead to conflict. Continuing the application of Algo-
rithm 1 for the precursor operator exit1(?,N) the following
transition graph is inferred.

exit1 idle1idle2enter1 exit2

SC

move2 move2 move1

idle2 enter2 enter1

The synthesised norms for the exit precursor action are
itemised below, with a single norm per unique run, and are
presented in detail in Table 4:

• N2: An agent should not choose to enter a tunnel, if
the exit of the tunnel and the exit of another tunnel
in which the other agent is in are common.

• N3: An agent should not choose to idle if the other
agent is in a tunnel, and the tunnel is connected to the
agents location.

• N4: An agent should not choose to move to a location,
if that location is the exit of a tunnel in which the
other agent is in.

George Christelis, Michael Rovatsos • Automated Norm Synthesis in an Agent-based Planning Environment

167

Table 1: The Synthesised Norms For The Conflict Specification {at1(N), at2(N)}
N1 =

D˘
at1(L), conn(L,N), ¬tunnel(L), ¬tunnel(N), at2(N)

¯
,move1(L, N)

E

N2 =
D˘

at1(L),at2(T2),tunnel(T2),tunnel(T1),¬tunnel(N),¬tunnel(L),conn(T2,N),conn(T1,N),conn(L,T1)
¯
,enter1(L,T1)

E

N3 =
D˘

at1(L),at2(N),conn(L,N),¬tunnel(N),tunnel(L)
¯
,idle2(N)

E

N4 =
D˘

at1(T),at2(L),conn(T,N),conn(L,N),tunnel(T),¬tunnel(N),¬tunnel(L)
¯
, move2(L, N)

E

N5 =
D˘

at1(L),at2(N),conn(L,N),¬tunnel(L),tunnel(N)
¯
, enter2(L, N)

E

The third, and simplest complete run for precursor operator

enter1 is SP
enter1→ SC

exit2→ SS , and is concerned with colli-
sions that occur within a tunnel. The final norm synthesised
for this run, detailed by N5 in Table 4, details that an agent
should not choose to enter a tunnel if the other agent is
already in that tunnel.

It is clear that the synthesised norms are applicable to
multiple states in the system. The synthesised norms are not
only general across system states but also across instances
of the domain itself.

5. DISCUSSION
The novel norm synthesis procedure presented in this pa-

per produces prohibitionary norms over state specifications,
performing a traversal of the specification space only as re-
quired. While such synthesis is typically performed offline,
it is possible to apply our procedure online. Agents in con-
flict states might employ the synthesis procedure to propose
sequences of actions to resolve conflict. Additionally, they
may propose new norms to ensure it does not happen again.
In such an online application, a computationally bound syn-
thesis would be employed to restrict the number of runs con-
sidered. For instance, agents might only be interested in a
single complete run for proposal and evaluation in a norma-
tive society. Furthermore, proposals for norms themselves
can be evaluated simply by adopting the proposed norms
and checking accessibility to the targeted conflict states.

One of the benefits of the proposed knowledge based ap-
proach is that domain knowledge is used to direct the syn-
thesis traversal. Therefore only valid and viable runs are
considered in each traversal. While in the general case it is
possible for many of the defined operators to be applicable
in some specification, it is more common that a smaller sub-
set of these would be applicable. Additionally, the use of
variables in operator specifications allows for the synthesis
of general norms over state specifications, that are in fact
applicable to multiple states in the system. Such generally
applicable norms are simpler for the agent to apply since
they do not rely on full conflict state enumeration.

We now present a discussion on the termination and com-
plexity of the procedure, followed by an argument for com-
pleteness and correctness.

Termination and Complexity Termination of the al-
gorithm is guaranteed due to the monotonicity of the state
specification refinement function, under the assumption that
we have a finite set of literals. For each successor operator
appended to a run, the resulting refinement of the run can
have one of two effects: the additional constraints imposed
by the new operator are not consistent with the existing
run, or the run is refined according to the new constraints
imposed by the operator. Refinement never removes liter-

als. Each refinement results in a new run that is at least as
specific as the previous one. Furthermore, no specification
is considered more than once per run since this would yield
a loop. Under these conditions the algorithm will always
terminate, as our refinement process will eventually result
in complete state specifications, or repeated states.

Norm synthesis has been shown to be NP-complete [8].
The decision problem belonging to the run traversal in Al-
gorithm 1 is NP-complete in the worst case, where the set
of partially applicable operators for any run includes all op-
erators (excluding the latest operator in the run). For each
incomplete run processed, m refined runs will result, one
for each of the m operators applicable. Again, in the worst
case, each of these runs is deemed incomplete and the pro-
cess continues. Therefore, from an initial run an exponential
number of runs will be inferred through multiple iterations
of the traversal loop.

Correctness and Completeness We begin by assum-

ing a complete run R∗ = S1
o1→ S2

o2→ . . .
on→ Sn. We show

that we always consider the operator o1 since (S2\S1)∩SC �=
∅ and post(o1)∩SC �= ∅. All contributing actions satisfy this
requirement by definition, and hence o1 is considered.

Next we show that the precursor state inference is sound
and that the condition on the synthesised norm is correct.

Assume the inferred partial run SP
o1→ SC . It is sufficient

to show that SP ⊆ S1. We write S′
1 ⊆ S2\post(o) ∪ pre(o),

and by
←−
Inf we define SP = SC\post(o) ∪ pre(o). But since

SC ⊆ S2 then SP ⊆ S1 holds. Furthermore, each successor
operator might introduce new literals resulting in SP being
continually refined. However, since these literals have not
been added by any precursor operator in the synthesised run,
we infer that they are part of the initial state SP . Similarly,
such literals must be part of S1, and therefore any new literal
added to SP must already be present in S1. Therefore any
norm conditional on SP will include S1.

Finally, we argue that for our algorithm to not find the
proposed run, then some successor operator must exist that
was overlooked. We disregard operators in two situations: if
a successor operator is inconsistent with the synthesised run,
or if the current state specification is conflict-free. Neither
hold, since if the first is true, then the operator is inconsis-
tent with R∗, and if the second is true then R∗ contains an
intermediate conflict-free state specification.

It follows that no such run exists and from this it follows
that the algorithm is correct. If a run exists, it will be found
and if no complete runs are produced by the algorithm then
all incomplete runs loop or terminate in conflict states and
no complete runs exist.

5.1 Improving Synthesis Performance
While the conflict-rooted traversal is required in the gen-

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

168

eral case to ensure accessibility under synthesised norms,
there are likely to be special cases where assumptions can
be made to improve the efficiency of the process. In certain
domains (such as our example domain) it is sufficient to en-
sure accessibility to any conflict-free state. In this case, the
traversal should check accessibility once any complete run
has been found, rather than obtaining all such runs first.
This approach holds in systems where the actions of one
agent are not dependent on another, as an agent is able
to achieve a goal independently of whether they are in a
conflict-state or not.

Alternatively, planning heuristics can be used to improve
the process. For instance, by assuming no negated literals,
an approximate plan length can be computed and used as
a heuristic to evaluate which runs to further traverse. Fur-
thermore, if a system designer provides a set of focal states
then the process is further simplified. If each of these spec-
ifications is accessible from all precursor states under the
synthesised prohibitions, then there is no need for an ex-
plicit full traversal procedure.

Via static analysis of the operators it may be possible to
reduce the number of runs traversed during synthesis. For
some o ∈ O, if post(o) |= SC then the operator should al-
ways be prohibited via the norm precondition �. If none of
the operators traverse from conflict to conflict-free specifi-
cations, then there is no need to consider accessibility, and
conflict-states must be prohibited.

6. RELATED WORK
The first formal notion of behavioural constraints as so-

cial norms was presented by Shoham and Tennenholtz [7, 8].
The NP-complete complexity result for automatically syn-
thesising norms is one of the seminal results of this work.
In this work the problem of norm synthesis is presented as
the process of finding useful norms given a state transition
system. While a theoretical complexity result is provided,
no concrete synthesis procedure is listed.

The synthesis problem is further investigated in [6], where
norm synthesis in a robot mobilisation domain is reduced
to a graph routing problem and computed efficiently using
existing graph theoretic methods. However, this solution is
very domain-specific as it can only operate on a very specific
graph-based structure.

In [3], the synthesis of minimal and simple social laws is
presented as an extension of Tennenholtz’ artificial social
systems work. This synthesis does not produce a useful law
according to some social objective, but rather takes a so-
cial law as input and provides a minimal or simple social
law as output. In this sense, this work is concerned with
norm refinement rather than norm synthesis since a norm is
assumed as provided by the designer.

In [9] the authors show that Alternating-time Temporal
Logic can be used to express and understand social laws
for multiagent systems. They illustrate how the synthesis
of social laws can be framed as a model checking problem
that is shown to be NP-complete in general. However, this
work assumes a complete action-based alternative transition
system representation which is often infeasible to develop
and maintain in practical systems.

7. CONCLUSIONS
The problem of norm synthesis has been shown to be NP-

complete [8], a complexity result born primarily from the
state enumeration required in abstract systems. In this pa-
per we argue that a knowledge based approach to the prob-
lem of norm synthesis can lead to a procedure that exploits
additional domain information to synthesise norms more ef-
ficiently. Planning domains commonly expose such structure
and information through their domain specifications, and we
have illustrated a novel method whereby norms are synthe-
sised independently of the specific instances of the planning
domain. Since the synthesis is a localised traversal of state
specifications the resulting norms are generally applicable
and apply to groups of states.

It is noteworthy that our method makes no assumptions
regarding possible agent goals as it is requires that conflict-
free paths are found among all conflict-free states. The com-
plexity problems that arise due to this requirement can of
course be avoided if such additional knowledge about agent
goals is available. We have also not explicitly addressed the
problem of escaping conflict states when they occur, but
this can be easily done using our methods by starting the
traversal procedure at the conflict state rather than its pre-
decessor and imposing norms that force the agents to leave
the conflict state set as quickly as possible.

In the future, we would like to investigate more com-
plex planning languages (e.g. including boolean precondi-
tions rather than just sets of literals), to explore the use of
“suggested” actions rather than prohibitions, and to intro-
duce global preferences over states in order to extend the
applicability of our method beyond domains with a binary
conflict/non-conflict distinction.

8. REFERENCES
[1] G. Boella, L. van der Torre, and H. Verhagen. A

normative framework for agent-based systems.
Computational and Mathematical Organization
Theory, 12(2-3):71–79, Oct. 2006.

[2] W. Briggs and D. Cook. Flexible social laws. In In
Proceedings 14th International Joint Conference on
Artificial Intelligence, pages 688–693, 1995.

[3] D. Fitoussi and M. Tennenholtz. Choosing social laws
for multi-agent systems: Minimality and simplicity.
Artificial Intelligence, 119:61–101, 2000.

[4] D. Lewis. Convention: A Philosophical Study. Harvard
University Press, first edition, 1969.

[5] B. Nebel. On the compilability and expressive power
of propositional planning formalisms. Journal of
Artificial Intelligence, 12:271–315, May 2000.

[6] S. Onn and M. Tennenholtz. Determination of social
laws for multi-agent mobilization. Artificial
Intelligence, 95:155–167, Jun 1997.

[7] Y. Shoham and M. Tennenholtz. On the synthesis of
useful social laws for artificial agent societies. In
Proceedings of the 10th National Conference on
Artificial Intelligence, pages 276–281, 1992.

[8] Y. Shoham and M. Tennenholtz. On social laws for
artificial agent societies: Off-line design. Journal of
Artificial Intelligence, 73(1-2):231–252, Feb. 1995.

[9] W. van der Hoek, M. Roberts, and M. Wooldridge.
Social laws in alternating time: Effectiveness,
feasibility, and synthesis. Synthese, 156(1), May 2007.

[10] G. Weiß, editor. Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. MIT
Press, Cambridge, MA, USA, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

